

94-775 Unstructured Data Analytics

Lecture 10: Wrap up topic modeling & clustering; intro to predictive data analytics

Slides by George H. Chen

Administrivia

- Reminder: Quiz 2 is tomorrow 11:00am during the recitation slot <a> \overline{\over
 - SIOT 🥪
 - Coverage: weeks 3 + 4 as well as the lecture on Tue April 8 ("Lecture 9")
 - Given the relatively short time between Quiz 1 & Quiz 2, I've intentionally tried to dial down the difficulty compared to Quiz 1 (we'll find out tomorrow how you feel about Quiz 2's difficulty level!)
- Reminder: no formal Quiz 2 review session but I have an extra office hour slot today 7pm-8pm over Zoom
 - See Canvas announcement I sent out Mon April 7 for the Zoom link

(Flashback) LDA Generative Model

LDA models each word in document i to be generated as:

- 1. Randomly choose a topic Z (use topic distribution for doc i)
- 2. Randomly choose a word (use word distribution for topic Z)

How to choose the number of topics k?

How "Coherent" is a Topic?

Let's look at top-20 word lists (the ones from the demo)

```
[Topic 0]
   good: 0.01592254908129389
                                               If we see the word "good", how likely
    like: 0.01584763067117222
    just: 0.015714974597809874
                                                  are we to see the word "years"?
    think: 0.014658035148150044
    don: 0.01336602502776772
    time: 0.012159230893303024
                                                 P(see word "years" | see word "good")
   year: 0.011442050656933937
    new: 0.002768217977593912
   vears: 0.00843922077825026
    game: 0.008416482579473757
                                                  this probability is high for every pair of
    make: 0.008318270139852606
       0.00805613381872604
                                                  words in the top-20 list, then in some
    know: 0.00786552901690738
    going: 0.007357414502894818
                                                   sense the topic is more "coherent"
    better: 0.007305177940555176
    really: 0.007282768897233162
    got: 0.007100242166187475
    way: 0.007020258221618519
                                                        Coherence of topic:
    team : 0.006901091494924322
    car: 0.006860678090522195
                                                               \log \mathbb{P}(\text{see word } v|\text{see word } w)
                                            top words v, w that
Focus on a single topic at a time
                                             are not the same
                                                                                        numerical
                           # documents that mention both v and w +0.1
```

documents that mention w

issues

How Different is a Topic from the Others?

Let's look at top-20 word lists (the ones from the demo)

```
[Topic 0]
                                             [Topic 1]
                                                                                                [Topic 2]
good: 0.01592254908129389
                                             drive: 0.025114459755967225
                                                                                                10: 0.0320292203
like : 0.01584763067117222
                                             card: 0.01904504522714293
                                                                                                00: 0.0269643305
iust: 0.015714974597809874
                                             scsi : 0.01574807346309645
                                                                                                25 : 0.0218296912
think: 0.014658035148150044
                                             disk: 0.015086151949241311
                                                                                               15: 0.0206063577
don: 0.01336602502776772
                                             use: 0.01311205775591249
                                                                                               11: 0.0206043503
time: 0.012159230893303024
                                             output: 0.012487568705565076
                                                                                               20: 0.0204957609
year: 0.011442050656933937
                                             file: 0.011474974819227298
                                                                                               12: 0.0203766844
new: 0.008768217977593912
                                             bit: 0.011450491727323115
                                                                                               14: 0.0180554708
years: 0.00843922077825026
                                             hard: 0.010426435918865882
                                                                                               16: 0.0164602656
game: 0.008416482579473757
                                             entry: 0.009962381704950415
                                                                                               13: 0.0160230124
make: 0.008318270139852606
                                             memory: 0.009892936703385204
                                                                                               17: 0.0160189031
                                             mac: 0.009531449582937765
ve: 0.00805613381872604
                                                                                                18: 0.0159314160
know: 0.00786552901690738
                                             video: 0.009451338641933656
                                                                                                30: 0.0134871298
going: 0.007357414502894818
                                             drives: 0.009074000962777757
                                                                                                50: 0.0133230831
better: 0.007305177940555176
                                             pc: 0.0090703286112168
                                                                                               24: 0.0131269045
                                             windows: 0.008135023862197355
really: 0.007282768897233162
                                                                                               19: 0.0125205615
got: 0.007100242166187475
                                             16: 0.00798823814975238
                                                                                                55: 0.0125002331
                                             bus: 0.007927283819698584
way: 0.007020258221618519
                                                                                               21: 0.0122642479
team : 0.006901091494924322
                                             controller: 0.007902057876189581
                                                                                                40: 0.0119281525
                                                                                                22: 0.0112072317
car: 0.006860678090522195
                                             program : 0.00784268458596016
```

If "good" only shows up in the top-20 word list for topic 0, then it is considered a unique top word for topic 0

Each topic has a # of unique top words

How to Choose Number of Topics k?

Compute:

Topic 0's coherence score

Topic 1's coherence score

•

Topic (k-1)'s coherence score

Compute average coherence

Topic 0's # unique top words

Topic 1's # unique top words

•

: Topic (k-1)'s # unique top words:

Compute average # unique top words

Can plot average coherence vs k, and average # unique top words vs k (for values of k you are willing to try)

How to Choose Number of Topics k?

Demo

Topic Modeling: Last Remarks

- There are score functions aside from coherence & # unique top words (e.g., normalized-mutual-information coherence, (log) lift score, ...)
- There are many topic models, not just LDA
 (e.g., Hierarchical Dirichlet Process, correlated topic models, SAGE, anchor word topic models, Scholar, embedded topic model, ...)
- Dynamic topic models can track how topics change over time
 - Requires time stamp for every text document we fit the model to
- Warning: learning topic models is very sensitive to random initialization
 - Can try fitting data multiple times using different random seeds & seeing which topics consistently show up across random seeds
- There are variants of topic models where users provide supervision (e.g., user specifies what some topics should be about in terms of top words, or where a topic should predict some outcome)
- On the course webpage, I posted a link to Maria Antoniak's practical guide for using LDA (very helpful if you want to use LDA in the future!)

A similar strategy could be used for choosing the number of clusters

Look at top word lists

Can compute average coherence across clusters

Can compute average # unique top words across clusters

Make the same plots as in the demo you just saw (replace topics with clusters)

Another Strategy for Choosing the Number of Clusters

I'm presenting this just so that you know about it but it often does not work well for unstructured data like text...

For k = 2, 3, ... up to some user-specified max value:

Fit model (k-means or GMM) using k

Compute a score for the model

Many score functions (CH index, silhouette, ...)

No single score function is the "best"!

Use whichever k has the best score

In practice, even if you use this strategy, it's important to visualize the clusters to see whether they make any sense

The "clustering on text" lecture demo has an example of using CH index as the score function

94-775

Part I: Exploratory data analysis

Identify structure present in "unstructured" data

- Frequency and co-occurrence analysis
- Visualizing high-dimensional data/dimensionality reduction
- Clustering
- Topic modeling

Part II: Predictive data analysis

Make predictions using known structure in data

- Basic concepts and how to assess quality of prediction models
- Neural nets and deep learning for analyzing images and text

What if we have labels?

Example: MNIST handwritten digits have known labels

If the labels are known...

If the labels are known...

And we assume data generated by GMM...

(Flashback) Learning a GMM

Don't need this top part if we know the labels!

Step 0: Guess k

Step 1: Guess cluster probabilities, means, and covariances

(often done using k-means)

Repeat until convergence:

Step 2: Compute probability of each point being in each of the k clusters

Step 3: Update cluster probabilities, means, and covariances accounting for probabilities of each point belonging to each of the clusters

We don't even need to repeat until convergence

If the labels are known...

And we assume data generated by GMM...

We can directly estimate cluster means, covariance matrices

Decision boundary

We just created a classifier

(a procedure that given a test data point tells us what "class" it belongs to)

This classifier we've created assumes a generative model

What should the label of this new "test" point be?

Whichever cluster has higher probability!

Predictive Data Analysis

Training data

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

Goal: Given new test feature vector x, predict label y

- y is discrete (such as colors red and blue)
 - → prediction is referred to as classification
- y is continuous (such as a real number)
 - → prediction is referred to as **regression**

We could have many such test feature vectors, which we collectively refer to as test data

A giant zoo of methods

- Generative models (like what we just described)
- Discriminative models (just care about learning prediction rule; after training model, we don't have a way to generate data)

Example of a Discriminative Method: *k*-NN Classification

What happens if k = n?

How do we choose k?

What I'll describe next can be used to select hyperparameter(s) for any prediction method

Fundamental question: How do we assess how good a prediction method is?

Hyperparameters vs. Parameters

- We fit a model's parameters to training data (terminology: we "learn" the parameters)
- We pick values of hyperparameters and they do not automatically get fit to training data
- Example: Gaussian mixture model
 - Hyperparameter: number of clusters k
 - Parameters: cluster probabilities, means, covariance matrices
- Example: *k*-NN classification
 - Hyperparameters: number of nearest neighbors k
 - Parameters: N/A

Actually, there's another hyperparameter: distance function to use (for simplicity, we assume Euclidean distance for now)